
VELOCIraptor Documentation
Release 1.60

Pascal Jahan Elahi, Rhys Poulton, Rodrigo Canas

Nov 01, 2021

CONTENTS:

1 Getting VELOCIraptor 3
1.1 Requirments . 3
1.2 Compilation Options . 4

2 Using VELOCIraptor 7
2.1 Running the code . 7

3 Understanding and Analysing VELOCIraptor Output 29
3.1 Properties . 30

4 Developing VELOCIraptor 37
4.1 Integration into N-Body/Hydro . 37

Index 39

i

ii

VELOCIraptor Documentation, Release 1.60

VELOCIraptor is a C++ halo finder using MPI and OpenMP APIs. The repository also contains several associated
analysis tools in python, example configuration files and analysis python scripts (and sample jupyter notebooks). The
code can also be compiled as a library for on-the-fly halo finding within an N-body/hydrodynamnical code. Currently
integration is limited to SWIFTSIM but extensions are in the works for other codes.

There is an associated halo merger tree code TreeFrog (also C++ MPI+OpenMP).

If you are using VELOCIraptor please cite the following paper, which describe the code in full:

@ARTICLE{doi:10.1017/pasa.2019.12,
author = {{Elahi}, Pascal J. and {Ca{\~n}as}, Rodrigo and {Poulton}, Rhys J.~J. and

→˓{Tobar}, Rodrigo J. and {Willis}, James S. and {Lagos}, Claudia del P. and {Power},␣
→˓Chris and {Robotham}, Aaron S.~G.},
title = {Hunting for galaxies and halos in simulations with VELOCIraptor},
journal = {\pasa},
keywords = {dark matter, galaxies: evolution, galaxies: halos, methods: numerical,␣

→˓Astrophysics -Cosmology and Nongalactic Astrophysics},
year = {2019},
month = {Jan},
volume = {36},
eid = {e021},
pages = {e021},
doi = {10.1017/pasa.2019.12},
archivePrefix = {arXiv},
eprint = {1902.01010},
adsurl = {https://ui.adsabs.harvard.edu/abs/2019PASA...36...21E},

}

If using VELOCIraptor for galaxy finding, please also cite:

@ARTICLE{doi:10.1093/mnras/sty2725,
author = {{Ca{\~n}as}, Rodrigo and {Elahi}, Pascal J. and {Welker}, Charlotte and {del␣

→˓P Lagos}, Claudia and {Power}, Chris and {Dubois}, Yohan and {Pichon}, Christophe},
title = {Introducing a new, robust galaxy-finder algorithm for simulations},
journal = {\mnras},
keywords = {methods: numerical, galaxies: evolution, dark matter, cosmology: theory,␣

→˓Astrophysics - Astrophysics of Galaxies},
year = {2019},
month = {Jan},
volume = {482},
number = {2},
pages = {2039-2064},
doi = {10.1093/mnras/sty2725},
archivePrefix = {arXiv},

(continues on next page)

CONTENTS: 1

http://icc.dur.ac.uk/swift/
https://www.github.com/pelahi/TreeFrog/

VELOCIraptor Documentation, Release 1.60

(continued from previous page)

eprint = {1806.11417},
primaryClass = {astro-ph.GA},
adsurl = {https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.2039C},

}

The original idea, which also discusses the identification of tidal debris is in:

@ARTICLE{doi:10.1111/j.1365-2966.2011.19485.x,
author = {{Elahi}, Pascal J. and {Thacker}, Robert J. and {Widrow}, Lawrence M.},
title = {Peaks above the Maxwellian Sea: a new approach to finding substructures in N-

→˓body haloes},
journal = {\mnras},
keywords = {methods: data analysis, methods: numerical, galaxies: haloes, galaxies:␣

→˓structure, dark matter, Astrophysics - Cosmology and Extragalactic Astrophysics},
year = {2011},
month = {Nov},
volume = {418},
number = {1},
pages = {320-335},
doi = {10.1111/j.1365-2966.2011.19485.x},
archivePrefix = {arXiv},
eprint = {1107.4289},
primaryClass = {astro-ph.CO},
adsurl = {https://ui.adsabs.harvard.edu/abs/2011MNRAS.418..320E},

}

An online entry can also be found at NASA’s ADS service.

2 CONTENTS:

https://ui.adsabs.harvard.edu/abs/2019PASA...36...21E/abstract

CHAPTER

ONE

GETTING VELOCIRAPTOR

VELOCIraptor is currently hosted in GitHub. To get a copy you can clone the repository:

git clone https://github.com/pelahi/VELOCIraptor-STF

VELOCIraptor’s compilation system is based on cmake. cmake will check that you have a proper compiler (anything
supporting C++11 or later should do), and scan the system for all required dependencies.

To compile VELOCIraptor run (assuming you are inside the VELOCIraptor-STF/ directory already):

$> mkdir build
$> cd build
$> cmake ..
$> make

With cmake you can also specify additional compilation flags. For example, if you want to generate the fastest possible
code you can try this:

$> cmake .. -DCMAKE_CXX_FLAGS="-O3 -march=native"

You can also specify a different installation directory like this:

$> cmake .. -DCMAKE_INSTALL_PREFIX=~/my/installation/directory

Other cmake options that can be given in the command-line include:

A list of compile time options is found below in Compilation Options.

1.1 Requirments

VELOCIraptor depends on:

• GSL - the GNU Scientific Library

• NBodylib - a internal scientific library included with VELOCIraptor. VELOCIraptor needs this library for a
number of structures, classes, and methods it provides.

3

https://github.com/pelahi/VELOCIraptor-STF
https://www.cmake.org/
https://www.gnu.org/software/gsl/

VELOCIraptor Documentation, Release 1.60

1.1.1 Optional requirements

For parallel use may need the following libraries are required for compilation depending on the compilation flags used:

• MPI - the Message Passing Interface (version 1.0 or higher). Many vendor supplied versions exist, in addition to
excellent open source implementations, e.g. Open MPI, MPICH or LAM.

• OpenMP - API, generally included with many compilers

VELOCIraptor also can output in a variety of formats: ASCII, binary, HDF and ADIOS. HDF and ADIOS can be
enabled and disabled, and require libraries.

• Hiearchical Data Format (HDF) - self describing data format.

• Adaptable IO System (ADIOS) - self describing data format.

1.2 Compilation Options

These can be passed to cmake

External library flags

• Parallel APIs can be enabled by setting
– For MPI

VR_MPI: boolean to compile with MPI support
VR_MPI_REDUCE: boolean that reduces impact of MPI memory overhead at the cost of extra
cpu cycles. Suggested this be turned on
MPI_LIBRARY: specify library path to MPI
MPI_EXTRA_LIBRARY: Extra MPI libraries to link against
VR_LARGE_MPI_DOMAIN : Enable if mpi domain is going to contain more than max 16 bit
integer number of mpi processes

– For OpenMP
NBODY_OPENMP: boolean to compile with OpenMP support
OpenMP_CXX_FLAGS: string, compiler flag that enables OpenMP

• Enable input/output formats
– For HDF

VR_HDF5: boolean on whether to include HDF support
VR_ALLOWPARALLELHDF5: boolean on whether to allow for parallel HDF support (if
available)
VR_ALLOWPARALLELHDF5COMPRESSIONHDF5: boolean on whether to allow for compression
parallel HDF support (THIS IS UNSTABLE, USE WITH CAUTION)
HDF5_ROOT: specify a local directory containing HDF library.

– for XDR (nchilada) input
VR_XDR: boolean on whether to include XDR support
XDR_DIR: specify a local directory containing XDR library.

– for adios output (alpha, not yet available)
VR_ADIOS: boolean on whether to include ADIOS support

4 Chapter 1. Getting VELOCIraptor

https://www.open-mpi.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.lam-mpi.org/
http://www.openmp.org/
https://www.hdfgroup.org/
https://www.olcf.ornl.gov/center-projects/adios/

VELOCIraptor Documentation, Release 1.60

ADIOS_DIR: specify a local directory containing ADIOS library.

• To set directories of required libraries
– Set the directories of the following libraries

GSL_DIR =

Internal precision and data structure flags

• Adjust precision in stored variables and calculations
– Calculations/properties at 32 bit float precision VR_SINGLE_PRECISION=ON

– all integers are 64 bit integers. Enable this if dealing with more than MAXINT total number of particles
VR_LONG_INT=ON

• Adjust NBodylib Particle class data precision and memory footprint
– Do not store the mass as all particles are the same mass. WARNING: This is not fully implement for all types of input and requires further testing, use with caution.

VR_NO_MASS=ON

– Use single precision to store positions,velocities, and possibly other internal properties
NBODY_SINGLE_PARTICLE_PRECISION=ON

– Use unsigned ints (size set by whether using long int or not) to store permanent ‘particle’ ids
NBODY_UNSIGNED_PARTICLE_PIDS=ON

– Use unsigned ints (size set by whether using long int or not) to store ids (index value). Note that velociraptor uses negative index values for sorting purposes so ONLY ENABLE if library to be used with other codes.
NBODY_UNSIGNED_PARTICLE_IDS=ON

• Hydro simulations: activate extra data structures in the NBodylib Particle class
– activate gas, store self-energy VR_USE_GAS=ON

– activate stars only, store metallicity, formation time, star foramtion rate (for gas particles)
VR_USE_STARS=ON

– Calculate bulk black hole properties VR_USE_BH=ON

– stars and gas and black holes VR_USE_HYDRO=ON

• Adjust memory/max size of Binary KD Tree options, used to run search particles. If tree is going to be built on more than max 32 bit integer number particles then enable, memory footprint increases
VR_USE_LARGE_KDTREE=ON

Operation flags

• only calculate local density distribution for particles residing in field objects (but using all particles to estimate quantity). Default.
VR_STRUCTURE_DEN=ON

• or just use particles inside field objects, reducing cpu cycles but will bias estimates for particle in outer region of field structures, overrides STRUCTUREDEN
VR_HALO_DEN=ON

• flag useful for zoom simulations with a high resolution region VR_ZOOM_SIM=ON

Executable flags

• Produce SWIFTSIM compatible library (executable still produced but does simply returns warning)

1.2. Compilation Options 5

VELOCIraptor Documentation, Release 1.60

VR_USE_SWIFT_INTERFACE=ON

CMAKE_CXX_FLAGS=-fPIC

• Enable debugging DEBUG=ON

6 Chapter 1. Getting VELOCIraptor

CHAPTER

TWO

USING VELOCIRAPTOR

2.1 Running the code

Velociraptor is a stand alone executable (with the executable named stf (or STructure Finder for historical reasons)).
It can be run in serial, with OpenMP, or MPI APIs. A typical command to start the code looks like:

./stf < args >

When compiled with OpenMP, setting the environment variable OMP_NUM_THREADS will set the number of threads in
the openmp sections.

With MPI using 8 MPI threads:

mpirun -np 8 ./stf < args >

where here we assume that the parallel environment uses the mpirun command to start MPI applications. Depending
on the operating system, other commands may be required for this task, e.g. srun on some Cray machines. Note
that the code can in principle be started using an arbitrary number of mpi threads, but the mpi decomposition is most
efficient for powers of 2.

The output produced by VELOCIraptor will typically consist of several files containing: bulk properties of structures
found; particles belonging to these structures; and several additional files containing configuration information.

When running in MPI, currently each mpi thread writes its own output unless the code has been compiled with a parallel
HDF5 library and HDF5 output is requested. In that case, a single file is written containing data from all threads for
each type of output requested.

Note: At the moment, mpirun assumes that a single structure can fit onto the memory local to the mpi thread. If larger
field objects (haloes) are to beanalyzed such that they are unlikely to fit into local memory, it is suggested another
machine be used. Revision is in the works to use the Singlehalo_search option after field halos have been identified.

2.1.1 Arguments

The code has several command line arguements. To list the arguments, type

./stf -?

7

VELOCIraptor Documentation, Release 1.60

The arguments that can be passed are:

-i < file name of input file >

-s < number of files over which input is split >

-I < input format [1 Gadget, 2 HDF5, 3 Tipsy, 4 RAMSES, 5 NCHILADA] >

-Z < number of files to read in parallel (when mpi is invoked) >

-o < output base name (this can be overwritten by a configuration option in the config
file. Suggestion would be to not use this option in the config file, use explicit
command>

-C < configuration file name (see Configuration File) >

Of these arguements, only an input file and an output name must be provided. In such a case, it is assumed that there
is only 1 input file, 1 read mpi thread, and default values for all other confirguration options. We suggest you do NOT
run the code in this fashion. Instead we suggest the code be run with at least a configuration file passed.

./stf -i input -o output -C configfile.txt

This configuration file is an ascii file that lists keywords and values. A list of keywords, along with a description
is presented below in Configuration File. A more typical command for a large cosmological simulation might be
something like

export OMP_NUM_THREADS=4
mpirun -np 64 ./stf -i somehdfbasename -s 128 -I 2 -Z 64 -o output -C configfile.txt >␣
→˓stf.log

2.1.2 Running within swiftsim

VELOCIraptor is also able to be called from within an N-body/Hydrodynamnical code as a library. Currently the code
has been integrated in to swifsim. Details can be found in the swiftsim documentation. The key is that the swiftsim
code’s configuration file lists the VELOCIraptor configuration file used to run VELOCIraptor.

2.1.3 Output

Here we provide a brief description of the standard data products provided by VELOCIraptor. For a more detailed
discussion and some sample analysis using these data products see Understanding and Analysing VELOCIraptor Out-
put.

When operating in a typical configuration with typical compile time options, the executable (or each mpi thread) will
produce several files (with the mpi threads appending their rank to the end of the file name, unless parallel HDF5 output
is requested). The files typically produced are :

Output files

• .properties: a file containing the bulk properties of all structures identified.

• .catalog_groups: a file containing the size of the structures (in number of particles associated) & informa-
tion need to read particle information produced by velociraptor

8 Chapter 2. Using VELOCIraptor

http://icc.dur.ac.uk/swift/docs/index.html

VELOCIraptor Documentation, Release 1.60

• .catalog_particles: a file containing a list of particle IDs of those in structures. Information contained
in .catalog_groups is used to parse this data.

• .catalog_particles.unbound: similar to catalog_particles but lists particles in structures but are
formally unbound. Information contained in .catalog_groups is used to parse this data.

Extra output files

• .profiles: a file containing the radial mass profiles of (sub)halos

• .catalog_parttypes: a file similar to .catalog_particles but stores particle type instead of paricle id.

• .catalog_parttypes.unbound: a file similar to .catalog_parttypes but for unbound particles.

• .extendedinfo: a file containing extra information on where particles are located in the input file for quick
extraction from said input file of particles within groups. Still in alpha

• .catalog_SOlist: a file containing particle IDs within the spherical overdensity region of halos.

2.1.4 Configuration File

An example configuration file can be found the examples directory within the repository (see for instance sample).
This sample file lists all the options. Only the keywords listed here will be used, all other words/characters are ignored.
One can check the options used by examining foo.configuration, where foo is your base output filename.

We suggest the following files as a basis:
• N-body simulations configuration

– This config file is for running a pure N-body simulation, producing 6dfof halos, find substructure
and then calculating a variety of properties for each object. The reference position about which
quantities are calculated is the minimum potential of an object. Substructure are subhalos, required
to be approximately self-bound (particles allowed to have potential energy 0.95 times that of the
kinetic energy). There are also similar config files that use 3dfof halos, one setup to also find
unbound tidal debris.

• Hydro simulations configuration

– This config is setup to load in all particles from a hydro sim and calculate a variety of quantities.
It is similar to the N-body sample.

• SWIFT N-body simulation configuration

– This config is setup to load in a swift snapshot. It is similar to the N-body sample but here is using
3dfof halos.

• SWIFT Hydro simulation configuration

– This config is setup to load in a swift hydro snapshot and also load in extra information from
the snapshot to calculate extra hydro/star/bh quantitites. Another example of such a config with
specific black hole related quantities is also available.

Also provided are config files for the SURFS and :download:GENESIS<../examples/genesis2019_configuration.cfg>
simulations.

Warning: Note that if misspell a keyword it will not be used.

2.1. Running the code 9

VELOCIraptor Documentation, Release 1.60

Warning: Since this file is always written DO NOT name your input configuration file foo.configuration.

There are numerous key words that can be passed. Here we list them, grouped into several categories:

• IO

– Inputs

– Outputs

• Parameters related to type of search

– Field search

– Substructure search

– Local Velocity Density

– Core search

• Unbinding

• Properties

• Units/Cosmology

– Units

– Cosmology

• Parallel

– MPI

– OpenMP

• Miscellaneous

I/O

Input and output related options

..topic:: Input related

Cosmological_input = 1/0

• Flag indicating that input simulation is cosmological or not. With cosmological input, a variety
of length/velocity scales are set to determine such things as the virial overdensity, linking length.

Input_chunk_size = 100000

• Amount of information to read from input file in one go (100000).

HDF_name_convention =

• Integer describing HDF dataset naming convection. Currently implemented values can be found
in HDF Input.

Input_includes_dm_particle = 1/0

• Flag indicating whether file contains dark matter/N-body particles in input file.

Input_includes_gas_particle = 1/0

• Flag indicating whether file contains gas particles in input file.

10 Chapter 2. Using VELOCIraptor

VELOCIraptor Documentation, Release 1.60

Input_includes_star_particle = 1/0

• Flag indicating whether file contains star particles in input file.

Input_includes_bh_particle = 1/0

• Flag indicating whether file contains black hole particles in input file.

Input_includes_wind_particle = 1/0

• Flag indicating whether file contains wind particles in input file.

Input_includes_tracer_particle = 1/0

• Flag indicating whether file contains tracer particles in input file.

Input_includes_extradm_particle = 1/0

• Flag indicating whether file contains extra (low resolution) N-body particles in input file from a
zoom simulation.

Gas related input
Gas_internal_property_names = ,

• Comma separated list of strings listing extra gas properties to be read from HDF file for
which bulk mean/total properties are calculated for objects. Useful way of passing proper-
ties like molecular H2 fraction, etc.

Gas_chemistry_names = ,

• Comma separated list of strings listing extra chemical properties to be read from HDF file
for which bulk mean/total properties are calculated for objects. Useful way of passing prop-
erties like molecular H2 fraction, etc.

Gas_chemistry_production_names = ,

• Comma separated list of strings listing extra production channels for metals to be read from
HDF file for which bulk mean/total properties are calculated for objects. Useful way of
passing properties like molecular H2 fraction, etc.

Star related input
Star_internal_property_names = ,

• Comma separated list of strings listing extra star properties to be read from HDF file for
which bulk mean/total properties are calculated for objects. Useful way of passing proper-
ties like molecular H2 fraction, etc.

Star_chemistry_names = ,

• Comma separated list of strings listing extra chemical properties to be read from HDF file
for which bulk mean/total properties are calculated for objects. Useful way of passing prop-
erties like molecular H2 fraction, etc.

Star_chemistry_production_names = ,

• Comma separated list of strings listing extra production channels for metals to be read from
HDF file for which bulk mean/total properties are calculated for objects. Useful way of
passing properties like molecular H2 fraction, etc.

Black hole related input
BH_internal_property_names = ,

2.1. Running the code 11

VELOCIraptor Documentation, Release 1.60

• Comma separated list of strings listing extra black properties to be read from HDF file for
which bulk mean/total properties are calculated for objects. Useful way of passing proper-
ties like molecular H2 fraction, etc.

BH_chemistry_names = ,

• Comma separated list of strings listing extra chemical properties to be read from HDF file
for which bulk mean/total properties are calculated for objects. Useful way of passing prop-
erties like molecular H2 fraction, etc.

BH_chemistry_production_names = ,

• Comma separated list of strings listing extra production channels for metals to be read from
HDF file for which bulk mean/total properties are calculated for objects. Useful way of
passing properties like molecular H2 fraction, etc.

Extra DM related input
Extra_dm_internal_property_names = ,

• Comma separated list of strings listing extra dm properties to be read from HDF file for
which bulk mean/total properties are calculated for objects. Useful for modified dark matter
simulations, such as annihilating and self-interactive dark matter.

Gadget related input
NSPH_extra_blocks =

• Integer inticading the number of extra SPH blocks are read in the file if gadget input.

NStar_extra_blocks =

• Integer inticading the number of extra star blocks are read in the file if gadget input.

NBH_extra_blocks =

• Integer inticading the number of extra BH blocks are read in the file if gadget input.

Output related

Output = filename

• Output base name. Overrides the name passed with the command line argument -o. Only implemented
for completeness.

Output_den = filename

• A filename for storing the intermediate step of calculating local densities. This is particularly useful if
the code is not compiled with STRUCDEN & HALOONLYDEN (see Compilation Options).

Separate_output_files = 1/0

• Flag indicating whether separate files are written for field and subhalo groups.

Write_group_array_file = 1/0

• Flag indicating whether to producing a file which lists for every particle the group they belong to. Can
be used with tipsy format or to tag every particle.

Binary_output = 2/1/0

• Integer flag indicating type of output.
– 2 self-describing binar format of HDF5. Recommended.

12 Chapter 2. Using VELOCIraptor

VELOCIraptor Documentation, Release 1.60

– 1 raw binary.

– 0 ASCII.

Extended_output = 1/0

• Flag indicating whether produce extended output for quick particle extraction from input catalog of
particles in structures

Spherical_overdensity_halo_particle_list_output = 1/0

• Flag indicating whether particle IDs identified within the spherical overdensity of field halos is written
(to a .catalog_SOlist). Useful if looking at evolution of particles within spherical overdensities.

Sort_by_binding_energy = 1/0

• Flag indicating whether particle IDs written in .catalog_particles are sorted by binding energy (1) or
potential energy (0).

No_particle_ID_list_output = 1/0

• Flag indicating whether particle IDs written (i.e., write the .catalog_* files). Default is 1. Particle ID
files are necessary for constructing merger trees but if just properties of (sub)halos, then turn off.

Searching for Structures

Options related to searching for (sub)halos. General search parameters set particles to be search and the overall type
of search.

Particle_search_type = 1/2/3/4

• An integer describing what types of particles are searched. A full list of options is in Particle search types. Typical options are:

– 1 All particles are searched

– 2 DarkMatter particles (which are typically defined as type 1,2,3 for gadget) are searched

– 3 Star particles (which are typically defined as type 4 for gadget) are searched

– 4 Gas particles (which are typically defined as type 0 for gadget) are searched

Baryon_searchflag = 0/1/2

• An integer indicating gas/stellar search done separately from DM search.
– 2 field search also altered to treat baryons differently, allowing only DM particles to be

used as head links (ie link dm-dm, dm-baryon, but not baryon-baryon nor baryon-dm).
Then DM substructure search with baryons associated to closest DM particle in phase-
space. Recommended.

– 1 field search run as normal and then substructure search for baryons run using baryons
identified in field search.

– 0 do nothing special for baryon particles.

Search_for_substructure = 1/0

• Flag indicating whether field objects are searched for internal substructures. Default is 1 (on)

Singlehalo_search_search = 0/1

2.1. Running the code 13

VELOCIraptor Documentation, Release 1.60

• Flag indicates that no field search is going to be run and the entire volume will be treated as
a background region (halo). Useful if searching for substructures in non-cosmological simu-
lations. But can also be co-opted for other searches using different outlier criteria and FOF
algorithms

Parameters related to field (halo) search

FoF_Field_search_type = 5/4/3

• An integer indicating what type of field search is run. There are several
– 5 standard 3D FOF based algorithm

– 4 standard 3D FOF based algorithm FOLLOWED by 6D FOF search using the velocity scale
defined by the largest halo on particles in 3DFOF groups

– 3 standard 3D FOF based algorithm FOLLOWED by 6D FOF search using adaptive velocity
scale for each 3DFOF group on particles in these groups.

Halo_3D_linking_length = 0.2

• Linking length used to find configuration space 3D FOF halos. If cosmological file then assumed to be
in units of inter particle spacing, if loading in a single halo then can be based on average interparticle
spacing calculated, otherwise in input units. Default is 0.2 in interpaticle spacing units.

Halo_velocity_linking_length_factor = 1.0

• Multiplicative factor of order unity for the dispersions used in 6D searches. Typical values are order
unity as velocity dispersions are used to define the velocity linking length scale.

Halo_6D_linking_length_factor = 1.0

• Multiplicative factor of order unity that allows one to use different configuration space linking lengths
between 3DFOF and 6DFOF field search. Typically this is 1.0

Halo_6D_vel_linking_length_factor = 1.25

• Multiplicative factor of order unity scaling applied to dispersions used in 6DFOF field search. Typical
values are 1.25.

Keep_FOF = 0/1

• Flag that keeps the 3DFOF if field 6DFOF search is done. This is typically invoked when searching for
galaxies as the 3DFOF can be interpreted as the inter halo stellar mass and 6DFOF galaxies.

Minimum_halo_size =-1

• Integer that allows field objects (or so-called halos) to require a different minimum size than all other
substructures. Ignored if not passed or <0, with halos defaulting to Minimum_size value.

Parameters related to substructure search

Note: default values are fine and typically do not need to be set in the configuration file. Exception would be
Minimum_size

FoF_search_type = 1

• Integer indicating what type of FOF algorithm to use. Several substructure FOF criteria are implemented
(see FOF search types for complete list). Suggested value is 1, the standard phase-space based, well
tested VELOCIraptor criterion.

14 Chapter 2. Using VELOCIraptor

VELOCIraptor Documentation, Release 1.60

Outlier_threshold = 2.5

• Threshold of sigma level of outliers to be searched which should be order unity but > 1 (default is 2.5)

Significance_level = 1.0

• Minimum significance level of a substructure which should be order unity (default is 1)

Velocity_ratio = 2.0

• Speed ratio used in linking particles which should be order unity and > 1 (default is 2)

Velocity_opening_angle = 0.10

• Angle between velocities when linking (in units of 𝜋) (default is 0.10)

Substructure_physical_linking_length = 0.1

• Physical linking length used in phase-space substructure FOF. If cosmological file then assumed to be
in units of inter particle spacing, if loading in a single halo then can be based on average interparticle
spacing calculated, otherwise in input units. Default is 0.1 in interpaticle spacing units.

CMrefadjustsubsearch_flag = 1/0

• Flag indicating whether particles are moved to the rough CM velocity frame of the background before
substructures are searched for (default is on)

Iterative_searchflag = 1/0

• Flag to use interactive substructure search which is designed to first identify spatially compact candidate
outlier regions and then relaxes the criteria to find the more diffuse (in phase-space) regions associate
with these candidate structures (default is on)

Iterative_linking_length_factor = 2.0

• Factor multiplied with linking length when using iterative method and identifying outlier regions as-
sociated with the initial candidate list of spatially compact outlier groups. Typical values are order
Halo_linking_length_factor (2.0)

Iterative_threshold_factor = 1.0

• Factor multiplied with threshold when using iterative method and identifying outlier regions associated
with the initial candidate list of spatially compact outlier groups. Typical values are order unity.

Iterative_Vratio_length_factor = 1.0

• Factor multiplied with speed ratio when using iterative method and identifying outlier regions associated
with the initial candidate list of spatially compact outlier groups. Typical values are order unity.

Iterative_ThetaOp_length_factor = 1.0

• Factor multiplied with opening angle when using iterative method and identifying outlier regions asso-
ciated with the initial candidate list of spatially compact outlier groups. Typical values are order unity.

Minimum_size = 20

• Minimum number of particles in a (sub)structure (default is 20).

Configuration for local density calculation used to identify substructures

Note: default values are fine and typically do not need to be set in the configuration file.

Local_velocity_density_approximate_calculation = 2/1/0

2.1. Running the code 15

VELOCIraptor Documentation, Release 1.60

• Flag indicating how to calculate computationally expensive local velocity densities.
– 2 approximative search limited to particles in halos (requires no mpi communication). Recom-

mended.

– 1 approximative search, group particles in leaf nodes of tree

– 0 full search per particle.

Nsearch_velocity = 32

• Number of velocity neighbours used to calculate velocity density (suggested value is 32)

Nsearch_physical = 32

• Number of physical neighbours searched to calculate velocity density (suggested value is 256)

Cell_fraction = 0.1

• Fraction of a halo contained in a subvolume used to characterize the background (suggested value is
0.01)

Grid_type = 1

• Integer describing type of grid used to decompose volume for substructure search (suggested value is 1)

– 1 standard physical shannon entropy, balanced KD tree volume decomposition into cells. Rec-
ommended

– 2 phase phase-space shannon entropy, balanced KD tree volume decomposition into cells

– 3 simple simple physical balanced KD tree decomposition of volume into cells

Configuration for core search and growth.

This either identifies major mergers in DM simulations or used to find galaxies when searching for stars.

Halo_core_search = 0/1/2

• Integer allows one to explicitly search for large 6D FOF cores that are indicative of a recent major merger. Since substructure is defined on the scale of the maximum cell size and major mergers typically result two or more phase-space dense regions that are larger than the cell size used in reasonable substructure searches, one can identify them using this search. The overall goal is to treat these objects differently than a substructure. However, if 2 is set, then smaller core is treated as substructure and all particles within the FOF envelop are assigned to the cores based on their phase-space distance to core particles.

– 2 search for cores and growth them. Recommended.

– 1
– 0 do not search cores.

Use_adaptive_core_search = 0/1

• Flag allows one to run complex adaptive phase-space search for large 6D FOF cores and then use these
linking lengths to separate mergers. 0 is simple high density dispersively cold cores with velocity scale
adaptive, 1 is adaptive in both configuration & velocity.

Use_phase_tensor_core_growth = 0/1

• Flag allows one to run complex phase-space growth of merger remnants (6D FOF cores found). 0 is
assignment with simple x and v dispersion to nearest core particle, 1 is phase-space tensor distance
assignemnt to CM of core.

Halo_core_ellx_fac =

• Factor applied to linking length when identifying merger remnants. Typically values are 0.5

16 Chapter 2. Using VELOCIraptor

VELOCIraptor Documentation, Release 1.60

Halo_core_ellv_fac =

• Factor applied to local dispersion to define the velocity scale used to identify merger remnants. Typically
values are order unity

Halo_core_ncellfac = 0.005

• Factor used to determine the minimum number of particles a merger remnants is composed of using
number of particles in the halo times this factor. For DM typically values are 0.005.

Halo_core_adaptive_sigma_fac = 2.0

• Factor used when running fully adaptive core search, specifies the width of the physical linking length
in configuration space dispersion (think of this as how many sigma to include). Typically values are 2.
This has been tested on hydrodynamnical simulations to separate galaxy mergers.

Halo_core_num_loops = 10

• Allows the core search to iterate, shrinking linking lengths used till the number of cores identified reaches
zero or this limit is reached. Allows apative search with larger linking length to be robust. Typically
values are 10, though typically loops run twice.

Halo_core_loop_ellx_fac = 0.75

• Factor by which configuration linking length is decreased when running loops for core search. Typically
values are 0.75

Halo_core_loop_ellv_fac = 1.0

• Factor by which velocity linking length is decreased when running loops for core search. Typically values
are 1.

Halo_core_loop_elln_fac = 1.2

• Factor by which min group size is changed when running loops for core search. Typically values are
order unity & > 1.

Halo_core_phase_significance = 2.0

• Significance a core must be in terms of phase-space distance scaled by dispersions (sigma). Typical
values are order unity & > 1.

Configuration for cleaning up substructuers that overlap in phase-space.

Substructures can be merged together if they overlap in phase space.

Structure_phase_merge_dist = 0.25

• Phase-distance normalised by dispersions below which structures are merged together. Typical valuse
are < 1.

Apply_phase_merge_to_host = 1

• Flag whether to also check substructures can be merged with the host background. 1 is on.

2.1. Running the code 17

VELOCIraptor Documentation, Release 1.60

Unbinding

Particles in strutures can be checked to see if they are bound relative to a kinetic reference frame (CM of the structure).
This cleans the (sub)structures of spurious objects and particles.

Unbind_flag = 1/0

• Flag indciating whether substructures passed through an unbinding routine.

Unbinding_type = 1/0

• Integer setting the unbinding criteria used. Either just remove particles deemeed “unbound” (1),
that is those with 𝛼𝑇 + 𝑊 > 0 given by Allowed_kinetic_potential_ratio, or (0) addi-
tionally removes “unbound” and least bound particles till system also has a true bound fraction
> Min_bound_mass_frac.

Allowed_kinetic_potential_ratio =

• Ratio of kinetic to potential energy at which a particle is still considered bound, ie: particle is
still bound if 𝛼𝑇 + 𝑊 < 0, so 𝛼 = 1 would be standard unbinding and 𝛼 < 1 allows one
to identify unbound tidal debris. Given that VELOCIraptor was designed to identify tidal
streams, it makes little sense to have this set to 1 unless explicitly required. Note that the code
still separates particles into bound and unbound. Values of 𝛼 ≥ 0.2 seems to minimize the
number of false positives in tidal debris while still identifying completely unbound tidal debris.

Min_bound_mass_frac =

• Minimum fraction of particles that must be self-bound. If interested in identifying tidal debris,
ues values of 0.2, for self-bound substructures, use & 0.5

Bound_halos = 0/1/2

• Integer that ignores the boundness of field structures (haloes) (0), checks if they are self bound
only before (1) or also after (2) substructures have been identified and extracted from the halo.
Demanding boundness after substructure search can have interesting consequences as it is pos-
sible that a multiple merger will appear as a single FOF halo, however all with all the cores
removed, the FOF halo is actually an unbound structure.

Keep_background_potential = 1/0

• Flag indicating whether while checking if a structure is bound, to treat the candidate structure
in isolation, updating the potential continuously, or leave the background potential. background
sea. When finding tidal debris, it is useful to keep the background. ref Options.uinfo & ref
UnbindInfo.bgpot n

Kinetic_reference_frame_type = 0/1

• Integer that sets the kinetic frame when determining whether particle is bound. Default is to use
the centre-of-mass velocity frame (0) but can also use region around minimum of the potential
(1).

Min_npot_ref = 10

• The minimum number of particles used to calculate the velocity of the minimum of the potential
(default is 10).

Frac_pot_ref = 0.1

• Fraction of particles used to calculate the velocity of the minimum of the potential (0.1). If
smaller than Min_npot_ref, that is used.

Unbinding_max_unbound_removal_fraction_per_iteration = 0.5

• Maximum fraction of unbound particles removed per iteration in unbinding process.

18 Chapter 2. Using VELOCIraptor

VELOCIraptor Documentation, Release 1.60

Unbinding_max_unbound_fraction = 0.95

• Maximum fraction of particles that can be considered unbound before group removed entirely
and is not processed iteratively.

Unbinding_max_unbound_fraction_allowed = 0.005

• Maximum fraction of unbound particles allowed after unbinding. If set to zero, all unbound
particles removed.

Approximate_potential_calculation = 1/0

• Calculate potentials using significantly faster approximate method (which with standard settings
has an erorr 1e-3). Default is 0 (off).

Approximate_potential_calculation_particle_number_fraction = 0.1

• Use 0.1 of all particles in object to calculate gravitational potential (values of <0.01 can lead
to larger errors, values of >0.2 cause calculation to not be significantly faster than standard
calculation).

Approximate_potential_calculation_min_particle = 5000

• Use a minimum of 5000 particles in approximate method. Approximate method should only be
used for well resolved objects as error increases with less well resolved objects and the speed up
is not as significant.

Properties

Configuration options related to the bulk properties calculated.

Inclusive_halo_mass = 3/2/1/0

• Flag indicating whether inclusive masses are calculated for field objects.
– 3 indicates inclusive SO masses are calculated after substructure is found.

– 2 indicates inclusive SO masses are calculated before substructure is found.

– 1 indicates inclusive SO masses are calculated before substructure is found but limited to
particles in the halo.

– 0 indicates masses exclusive.

Iterate_cm_flag = 0

• Flag indicating whether to iteratively find the centre-of-mass of an object (1) or simply deter-
ine bulk centre of mass and centre of mass velocity (0). Calculation is based on all particles
exclusively belonging to the object.

Reference_frame_for_properties = 2

• Flag indicating what reference position to use when calculating radially dependent properties.

– 2 use the position of the particle with the minimum potential.

– 1 use the position of the most bound particle.

– 0 use the centre-of-mass.

Particle_type_for_reference_frames = -1

• Flag indicating what particle type is used to determine the minimum potential reference position.

2.1. Running the code 19

VELOCIraptor Documentation, Release 1.60

– -1 all particle types

– 0-6 other int correspond to a specific particle type. For instance 1 would be dark matter
particles

Extensive_halo_properties_output = 1

• Flag indicating that one should calculate more properties for objects, such as angular momentum
in spherical overdensity apertures.

Extensive_gas_properties_output = 1

• Flag indicating that in addition to calculating extra halo properties also calculate gas content in
spherical overdensity apertures as well as their angular momentum. Must be used in conjunction
with Extensive_halo_properties_output = 1.

Extensive_star_properties_output = 1

• Flag indicating that in addition to calculating extra halo properties also calculate stellar content in
spherical overdensity apertures as well as their angular momentum. Must be used in conjunction
with Extensive_halo_properties_output = 1.

Aperture related config options
Calculate_aperture_quantities = 1

• Flag on whether to calculate aperture related masses, dispersions, metallicities

Number_of_apertures = 6

• Number of spherical apertures

Aperture_values_in_kpc = 3,5,10,30,50,100,

• Comma separated list of values in kpc

Number_of_projected_apertures = 3

• Number of projected apertures. Code calculates 3 projections per aperture: x, y, z.

Projected_aperture_values_in_kpc=10,50,100,

• Comma separated list of values in kpc

Spherical overdensity related config options
Number_of_overdensities = 5

• Number of spherical overdensities

Overdensity_values_in_critical_density=25,100,500,1000,2500,

• Comma separated list of spherical overdensity thresholds in units of the critical density in
cosmological simulations

Radial profile related config options
Calculate_radial_profiles = 1

• Flag on whether to calculate radial profiles of masses

Radial_profile_norm = 0

• Flag setting the radial normalisation and scaling. Default is log rad bins, in proper kpc

Number_of_radial_profile_bin_edges = 9

• Number of bin edges listed. Assumes lowest bin edge is r=0.

20 Chapter 2. Using VELOCIraptor

VELOCIraptor Documentation, Release 1.60

Radial_profile_bin_edges = -2.,-1.50,-1.00,-0.50,0.00,0.50,1.00,1.50,2.00

• Comma separated list of (log) r bin edges. Here example is for log r in proper kpc binning
so values are log(r).

Configuration for Extra Properties

These are configuration options related to the bulk properties calculated based on extra properties of the particles.
For instance, if hydro particles have a field called Turbulence that contains some quantity of the internal turbulent
energy and one wanted to calculate the average of this value for an object, one would use these options to load data
from an HDF5 file (other inputs are not so easily parsed, making this not an option). One needs to provide what
calculation to do (in the form of an integer flag specifying the calculation) and a string indicating the units. If the
input is in the form of a 2D array from which a particular column is to be used, one can also set an index. The result
is sorted in an output field that contains the name of the input field, the index (if >0), and a simple string describing
the function and ending with particle type, ie: Turbulence_average_gas These config options are combinations
of particle type, categories and entry types. A full entry must be provided in a comma separated list and terminate
in a comma.

• Currently implemented are options for
– Gas_

– Stars_

– BH_

– Extra_DM_

• The currently catagories of properties are (except for Extra_DM which only has the first listed). An input field can be specified a number of times with different desired calculations to be run.

– _internal_property

– _chemistry

– _chemistry_production

• The entries are
– _names

– _index_in_file

– _calculation_type

– _input_output_unit_conversion_factors

– _output_units

Calculations allowed are as follows. You can add massweighted to any entry to calculate the mass weighted quantity.
Note at entries should be lower case.

• average

• total

• std (standard deviation)

• min

• max

• logaverage (average(log(x)))

• logstd (std(log(x)))

2.1. Running the code 21

VELOCIraptor Documentation, Release 1.60

Output units are indices of standard units separated by colons along with any additional extra units which are added
as strings to the name of the output. The standard units for which indices can be provided are

• Mass (where conversion to solar mass provided can be used to convert output to known units)

• Length (where conversion to kpc provided can be used to convert output to known units)

• Velocity (where conversion to km/s provided can be used to convert output to known units)

• Time (where conversion to Gyrs provided can be used to convert output to known units)

Thus to specify mass per unit time^2 and another entry with force, as an example, one would use a string of

• “1:0:0:-2:,1:0:1:-1:,”

This does require the input to be converted appropriately to match the units of mass, length, velocity, time. This
attribute information will be stored the attributes associated with the data set, similar to other fields. One can also
provide complex units with a string that will be stored in a attribute Dimension_Extra_Info

• “cookies_per_person,”

One can also calculate total or average in apertures provided aperture quantities are being calculated.

• aperture_total

• aperture_average

Example extra hydro Properties related config options
Gas_internal_property_names = ,

• Names of fields to be read from an input HDF5 file that relate to hydro quantities, for which calcu-
lations can be done

Gas_internal_property_index_in_file = ,

• Index in 2d array to be read from an input HDF5, useful for fields like metallicity where it is common
to have an entry for each element

Gas_internal_property_calculation_type = ,

• Integer flag indicating what calculation is to be done.

Gas_internal_property_input_output_unit_conversion_factors = ,

• Float storing the conversion factor (if not 1.0) to take input units to output units.

Gas_internal_property_output_units = ,

• String storing the units of the output.

Simulation Info

Options related to the input and output units and cosmology.

Units

Set internal (and output) units and conversion factors to well known units

Length_input_unit_conversion_to_output_unit =

• Factor by which input length unit is scaled, setting the internal code and output unit

22 Chapter 2. Using VELOCIraptor

VELOCIraptor Documentation, Release 1.60

Velocity_input_unit_conversion_to_output_unit =

• Factor by which input velocity unit is scaled, setting the internal code and output unit

Mass_input_unit_conversion_to_output_unit =

• Factor by which input mass unit is scaled, setting the internal code and output unit

Metallicity_input_unit_conversion_to_output_unit =

• Factor by which input metallicity unit is scaled, setting the internal code and output unit

Star_formation_rate_input_unit_conversion_to_output_unit =

• Factor by which input star formation rate of gas unit is scaled, setting the internal code and output unit

Stellar_age_input_unit_conversion_to_output_unit =

• Factor by which input stellar ages unit is scaled, setting the internal code and output unit

Stellar_age_input_is_cosmological_scalefactor =

• 0/1 to indicate whether stellar age is cosmological scale factor

Star_formation_rate_input_is_specific_star_formation_rate =

• 0/1 to indicate whether star formation rates are specific star formation rates

Gas_star_forming_rate_threshold =

• Value in code units that splits gas from star forming and non-star forming. Default value is 0

Gravity =

• Gravity in the internal output units, that is should be set such that 𝑣2 = 𝐺𝑚/𝑟, where v,m,r are the
internal velocity, mass and length units. Note that this does not have to be provided as it will be calculated
based on the output units (that indicate how they are converted to kpc, km/s etc) and the gravitational
constant of 6.67430e-11 kg^-1 m^3 / s^2. A warning will be given if the provided gravitational constant
differs significantly from the expected value given the output.

Hubble_unit =

• Unit of Hubble expansion in internal output units (from normal km/s/Mpc use 100). Like the gravi-
tational constant, this does not have to be provided as it will be calculated from the output units. A
warning will be given if provided value differs significantly from the expected value given the output.
This is ignored if non-cosmological input

Mass_value =

• If code is compiled not to store mass using the option NOMASS (see Compilation Options) then set this
value.

Length_unit_to_kpc =

• Specify the conversion factor from the output unit to kpc

Velocity_unit_to_kms =

• Specify the conversion factor from the output unit to km/s

Mass_unit_to_solarmass =

• Specify the conversion factor from the output unit to solar masses

Stellar_age_to_yr =

• Specify the conversion factor from the output unit to yr

2.1. Running the code 23

VELOCIraptor Documentation, Release 1.60

Comoving_units = 1/0

• Flag indicating whether the properties output is in physical or comoving little h units.

Cosmology

If input is cosmological, then for some input formats (gadget, HDF), these quantites can be read from the input file.
Tipsy formats require that these be set in the configuration file.

Period = 0

• Period of the box in input units.

Scale_factor = 1.0

• Scale factor time

h_val = 1.0

• The “little h” value often used in cosmological simulations.

Omega_m = 1.0

• Matter density in units of the critical density at z=0 used in cosmological simulations.

Omega_Lambda = 0.0

• Energy density of the cosmological constant (or dark energy) in units of the critical density at z=0 used
in cosmological simulations.

Omega_cdm = 1.0

• Dark matter density in units of the critical density at z=0 used in cosmological simulations. For non-
standard DM models (annihilating, decaying, coupled), may be useful to provide the current DM density.

Omega_b = 0.0

• Baryon density in units of the critical density at z=0 used in cosmological simulations.

Omega_r = 0.0

• Radiation density in units of the critical density at z=0 used in cosmological simulations. Typically 0
(negligible).

Omega_nu = 0.0

• Neutrino density in units of the critical density at z=0 used in cosmological simulations. Typically 0
(negligible).

Omega_k = 0.0

• Curvature density in units of the critical density at z=0 used in cosmological simulations. Typically 0
(flat).

Omega_DE = 0.0

• Dark Energy density in units of the critical density at z=0 used in cosmological simulations. This is
addition to (or replacing) the energy density of the cosmological constant and has an associated equation
of state, 𝑤𝐷𝐸 .

w_of_DE = -1.0

• Equation of state of the dark energy fluid, 𝑤 = 𝑝
𝜌 . This is not necessary unless one is using a cosmolog-

ical simulation with 𝑤 ̸= −1. Currently not fully implemented.

24 Chapter 2. Using VELOCIraptor

VELOCIraptor Documentation, Release 1.60

Virial_density = 200.0

• Virial overdensity in units of the background matter density used in cosmological simulations. If -1,
then the Bryan & Norman 1998 virial density is calculated based on a LCDM cosmology, otherwise
overrides the Bryan & Norman calculation.

Critical_density = 1.0

• Critical density in input units used in cosmological simulations.

Parallel

Options related to MPI/OpenMP/Pthread parallelisation.

MPI

MPI specific options

MPI_part_allocation_fac = 0.1

• Factor used in memory allocated in mpi mode to store particles is (1+factor)* the memory need for the
initial mpi decomposition. This factor should be >0 and is mean to allow a little room for particles to
be exchanged between mpi threads withouth having to require new memory allocations and copying of
data.

MPI_particle_total_buf_size =

• Total memory size in bytes used to store particles in temporary buffer such that particles are sent to
non-reading mpi processes in chunks of size buffer_size/NProcs/sizeof(Particle).

MPI_number_of_tasks_per_write =

• Number of mpi tasks that are grouped for collective HDF5 writes is parallel HDF5 is enabled. Net result
is that the total number of files written is ceiling(Number of MPI tasks)/(Number of tasks per write)

MPI_use_zcurve_mesh_decomposition = 1/0

• Whether to use a z-curve spatial decomposition (advised). Default is true

MPI_zcurve_mesh_decomposition_min_num_cells_per_dim =

• Minimum number of cells per dimension from which to construct a mesh used in the z-curve decompo-
sition. Min number is 8. Code does use

number of processors to scale mesh resolution using NProcs^(1/3)*2 if > 8. For zooms, advised to set this to
a high value corresponding to the order of a few times Lbox/Zoom_region_length.

OpenMP specific parallelisation options

OMP_run_fof = 1

• Flag indicating whether to run FOF searches with OpenMP threads.

OMP_fof_region_size = 100000000

• Number of particles per OpenMP region.

2.1. Running the code 25

VELOCIraptor Documentation, Release 1.60

Miscellaneous

Other configuration options

Snapshot_value =

• If halo ids need to be offset to some starting value based on the snapshot of the output (say
to make temporally unique halo ids that are useful for some halo merger tree codes), one can
specific a snapshot number. All halo ids will be listed as internal haloid + snapnum * 1012 (or
if using 32 bit integers and 64 bit integers, then ids offset by 106).

Effective_Resolution =

• If running a multiple resolution zoom simulation, simple method of scaling the linking length
by using the period and this effective resolution, ie: 𝑝/𝑁eff

Verbose = 0/1/2

• Integer indicating how talkative the code is (2 very verbose, 1 verbose, 0 quiet).

Particle search types

List of particle types (and combinations) that can be searched are

group SEARCHTYPES

Defines

PSTALL

PSTBH

PSTDARK

PSTGAS

PSTNOBH

PSTSTAR

FOF search types

List of fof aglorithms implemented are

group FOFTYPES

26 Chapter 2. Using VELOCIraptor

VELOCIraptor Documentation, Release 1.60

Defines

FOF3D
3d search

FOF6D
6d fof but only use single velocity dispersion from largest 3d fof object

FOF6DADAPTIVE
no subsets made, just 6d (with each 6dfof search using 3d fof velocity dispersion,)

FOF6DCORE

FOF6DSUBSET
6D FOF search but only with outliers

FOFBARYON6D
baryon 6D FOF search

FOFBARYONPHASETENSOR
baryon phase tensor search

FOFSTNOSUBSET
phase-space FOF but no subset produced

FOFSTPROB
call FOFStreamwithprob

FOFSTPROBLX
like FOFStreamwithprob search but here linking length adjusted by velocity offset, smaller lengths for larger
velocity offsets

FOFSTPROBNN
like FOFStreamwithprob search but search is limited to nearest physical neighbours

FOFSTPROBNNLX
like FOFSTPROBLX but for NN search

FOFSTPROBNNNODIST
like FOFSTPROBNN but there is not linking length applied just use nearest neighbours

FOFSTPROBSCALEELL

FOFSTPROBSCALEELLNN

2.1. Running the code 27

VELOCIraptor Documentation, Release 1.60

HDF Input

List of naming conventions are

group HDFNAMES

Defines

HDFEAGLENAMES

HDFEAGLEVERSION2NAMES

HDFGADGETXNAMES

HDFGIZMONAMES

HDFILLUSTISNAMES

HDFMUFASANAMES

HDFNUMNAMETYPES

HDFOLDSWIFTEAGLENAMES

HDFSIMBANAMES

HDFSWIFTEAGLENAMES

HDFSWIFTFLAMINGONAMES

For complete discussion of implementation see ../src/hdfitems.h

28 Chapter 2. Using VELOCIraptor

CHAPTER

THREE

UNDERSTANDING AND ANALYSING VELOCIRAPTOR OUTPUT

VELOCIraptor produces several different types of output files.

(with the mpi threads appending their rank to the end of the file name unless not compiled with MPI or if Parallel HDF5
is used.):

Standard files

• .properties: a file containing the bulk properties of all structures identified.

• .catalog_groups: a file containing the size of the structures (in number of particles associated) & informa-
tion need to read particle information produced by velociraptor

• .catalog_particles: a file containing a list of particle IDs of those in structures. Information contained
in .catalog_groups is used to parse this data.

• .catalog_particles.unbound: similar to catalog_particles but lists particles in structures but are
formally unbound. Information contained in .catalog_groups is used to parse this data.

Extra files

• .catalog_parttypes: a file similar to .catalog_particles but containing a list of particle types of those
in structures. Information contained in .catalog_groups is used to parse this data. Produced if multiple
particle types are processed by VELOCIraptor.

• .catalog_parttypes.unbound: similar to catalog_parttypes but lists particles in structures but are
formally unbound.

• .profiles : a file containing the radial profiles of groups. Produced if radial profiles are requested.

• .catalog_SOlist : a file containing the a list of particle IDs of particles found within a large Spherical
region around Field halos. Produced if a list of paritcles wihtin so regions is requested.

29

VELOCIraptor Documentation, Release 1.60

3.1 Properties

There are a variety of properties calculated for each object found. Some are typical of all halo finders such as the mass
of an object (which can be a halo, subhalo, tidal debris), along with more complex properties such as the eigenvectors
and eigenvalues of the mass distribution defined by the reduced inertia tensor. The number of properties also varies
with the type of run. For hydrodynamic simulations where VELOCIraptor has been compiled to use gas, star and
black hole properties, such as masses, temperatures, etc are also calculated. The code will also calculate properties
based on loading specific extra fields associated with particle types (this interface requires HDF5 input or on the fly
invocation and outputs properties with the same name as the loaded property, see Using VELOCIraptor).

Note that if HDF5 output is produced, the properties will be in the form of data sets with specific names and each
data set will have attributes describing the unit of the field in the form of Dimension_Length, Dimension_Mass,
Dimension_Velocity, Dimension_Time, which indicate the index of the unit. Extra output from arbitrary input fields
can also have unusual units stored in Dimension_Extra_Info as a string.

We give an almost complete list of properties and the keyword associate with the property (in ASCII and HDF5). For
clarity we list properties in several tables corresponding to

• Standard Properties,

• Gas Properties,

• Star Properties,

• Black Hole Properties,

• Interloper Properties,

• Extra DM Properties,

3.1.1 Standard Properties

This is a list of standard properties that are always calculated unless indicated otherwise (some require an extra config-
uration option). Properties are calculated relative to the object’s centre, which can be either the position of the particle
with the minimum potential, or centre-of-mass, or position of most bound particle.

Name Comments
ID and Type information
ID Halo ID. ID = index of halo + 1 + TEMPORALHALOIDVAL * Snapshot_value, giving a temporally unique halo id that can be quickly parsed for an index and a snapshot number.
ID_mbp Particle ID of the most bound particle in the group.
hostHaloID ID of the host field halo. If an object is a field halo, this is -1.
Structuretype Structure types contain information on how the object was found and at what level in the subhalo hierarchy. Field halos are 10. Substructures identified using the local velocity field are type 10+10=20, substructures identified using cores are type 10+5=15. For structures found at level 2 (ie: subhalos within subhalos), the type offset is 20, and so on.
numSubStruct Number of substructures. Subhalos can have subsubhalos.
Mass and radius properties: All properties are in output units.
npart Number of particles belonging exclusively to the object.
Mass_tot Total mass of particles belonging exclusively to the object,

𝑀tot.
Mass_FOF Total mass of particles in the FOF, 𝑀FOF. Is zero for substructure.
Mass_200mean Overdensity mass defined by mean matter density, 𝑀200𝜌𝑚 . For field halos, if inclusive masses are desired, this is based on the particles in the FOF. If full spherical overdensity masses are desired, then includes all particles (whether they belong to the object, the background or another object) within a spherical region. For subhalos, this is based on particles belonging exclusively to the object.
Mass_200crit Overdensity mass defined by critical density, 𝑀200𝜌𝑐

. Behaviour like Mass_200mean.
Mass_BN98 Overdensity mass defined by mean matter density and ∆(𝑧) given by Bryan & Norman (1998), 𝑀Δ(𝑧)𝜌𝑐

. Behaviour like Mass_200mean.
Mvir User defined virial mass, 𝑀vir. Behaviour like Mass_200mean.
R_size Maximum distance of particles belonging exclusively to the object and the object’s centre.
R_200mean Radius related to overdensity mass Mass_200mean.

continues on next page

30 Chapter 3. Understanding and Analysing VELOCIraptor Output

VELOCIraptor Documentation, Release 1.60

Table 1 – continued from previous page
Name Comments
R_200crit
R_BN98
Rvir
R_HalfMass Half mass radius based on the Mass_tot.
R_HalfMass_200mean Half mass radius based on the Mass_200mean.
R_HalfMass_200crit
R_HalfMass_BN98
Angular Momentum in Spherical Overdensity: Calculate if extra halo properties are requested by setting the
config option ` **Extensive_halo_properties_output=1** `Also calculates inclusive spherical overdensity and also
exclusive to halo as _exclusive.
Lx_200c 𝑥 component of the total angular momentum all the mass within 𝑅200𝜌𝑐 .
Ly_200c
Lz_200c
Lx_200m 𝑥 component of the total angular momentum all the mass within 𝑅200𝜌𝑚 .
Ly_200m
Lz_200m
Lx_BN98 𝑥 component of the total angular momentum all the mass within 𝑅𝐵𝑁98.
Ly_BN98
Lz_BN98
Position and Velocity: All properties are in output units. Objects have positions periodically wrapped.
Xc 𝑥 coordinate of centre-of-mass.
Yc
Zc
Xcmbp 𝑥 coordinate of most bound particle.
Ycmbp
Zcmbp
Xcminpot 𝑥 coordinate of the minimum potential.
Ycminpot
Zcminpot
VXc 𝑣𝑥 velocity of centre-of-mass.
VYc
VZc
VXcmbp 𝑣𝑥 velocity of most bound particle.
VYcmbp
VZcmbp
VXcminpot 𝑣𝑥 velocity of the particle with the minimum potential.
VYcminpot
VZcminpot
Velocity and Angular Momentum: All properties are in output units.
Vmax Maximum circular velocity based on particles belonging exclusively to the object, where circular velocities are defined by 𝑉 2

circ = 𝐺𝑀/𝑅.
Rmax Radius of maximum circular velocity.
sigV Velocity dispersion based on the velocity dispersion tensor 𝜎𝑣 = |Σ|1/6, where Σ is the velocity dispersion tensor.
veldisp_xx The 𝑥, 𝑥 component of the velocity dispersion tensor.
veldisp_xy
veldisp_xz
veldisp_yx
veldisp_yy
veldisp_yz
veldisp_zx

continues on next page

3.1. Properties 31

VELOCIraptor Documentation, Release 1.60

Table 1 – continued from previous page
Name Comments
veldisp_zy
veldisp_zz
Lx 𝑥 component of the total angular momentum about the object’s centre and centre-of-mass-velocity using particles belonging exclusively to the object.
Ly
Lz
lambda_B Bullock et al (2001) like spin parameter 𝜆𝐵 using total angular momentum and the spherical overdensity mass, 𝜆𝐵 = 𝐽√

2𝑀𝑉𝑅
.

Krot Measure of rotational support about the angular momentum axis 𝜅rot =
∑︀

𝑖 1/2𝑚𝑖𝑗𝑧,𝑖𝑟𝑖∑︀
𝑖 𝑇𝑖

, where the first sum is over the motion of particles along the angular momentum axis and the second sum is over kinetic energies (see Sales et al (2010)).
Morphology: All properties are in output units.
cNFW Calculated assuming an NFW profile (Navarro, Frenk, & White 1997) following Prada et al, (2012a) where we solve 𝑉 2

max

𝐺𝑀Δ/𝑅Δ
− 0.216𝑐

ln(1+𝑐)−𝑐/(1+𝑐) = 0.

cNFW_200crit Calculated assuming an NFW profile (Navarro, Frenk, & White 1997) using the half mass radius relative to the overdensity radius :math:``muequiv R_{1/2}/R_Delta` where here uses the 200crit overdensity mass to solve ln(1 + 𝜇𝑐) − 𝜇𝑐/(1 + 𝜇𝑐) − 1/2[ln(1 + 𝑐) − 𝑐/(1 + 𝑐)] = 0.
cNFW_200mean
cNFW_BN98
q We calculate the shape using the reduced inertia tensor (Dubinski et al, 1991; Allgood et al, 2006), 𝐼𝑗,𝑘 =

∑︀
𝑛

𝑚𝑛𝑥
′
𝑗,𝑛𝑥

′
𝑘,𝑛

(𝑟′𝑛)
2 where the sum is over particles exclusively belonging to the object and, (𝑟′𝑛)2 = (𝑥′

𝑛)2 + (𝑦′𝑛/𝑞)2 + (𝑧′𝑛/𝑠)
2 is the ellipsoidal distance between the halo’s centre and the 𝑛th particle, primed coordinates are in the eigenvector frame of the reduced inertia tensor and 𝑞 & 𝑠 are the semi-major and minor axis ratios respectively. Thus 𝑞 is the semi-major axis ratio. In eigenvector frame, x axis is major, y is semi-major, and z minor.

s Minor axis ratio.
eig_xx Eigenvectors of morphology.
eig_xy
eig_xz
eig_yx
eig_yy
eig_yz
eig_zx
eig_zy
eig_zz
Energy: All properties are in output units.
Ekin The total kinetic energy,

∑︀
𝑇𝑖.

Epot The total gravitational potential energy 1/2
∑︀

𝑊𝑖, where 1/2 comes from double counting.
Efrac The fraction of particles that are formally bound (i.e., have 𝑊𝑖 + 𝑇𝑖 < 0).
Quantities within 𝑅(𝑉max): Properties based on particles within 𝑟 ≤ 𝑅(𝑉max).
RVmax_sigV Dispersion, like sigV for 𝑟 ≤ 𝑅(𝑉max).
RVmax_veldisp_xx Dispersion tensor, like veldisp_xx for 𝑟 ≤ 𝑅(𝑉max).
RVmax_veldisp_xy
RVmax_veldisp_xz
RVmax_veldisp_yx
RVmax_veldisp_yy
RVmax_veldisp_yz
RVmax_veldisp_zx
RVmax_veldisp_zy
RVmax_veldisp_zz
RVmax_lambda_B Spin parameter, like lambda_B for 𝑟 ≤ 𝑅(𝑉max).
RVmax_Lx Total angular momentum, like Lx for 𝑟 ≤ 𝑅(𝑉max).
RVmax_Ly
RVmax_Lz
RVmax_q Semi-major axis ratio, like q for 𝑟 ≤ 𝑅(𝑉max).
RVmax_s Minor axisratio, like s for 𝑟 ≤ 𝑅(𝑉max).
RVmax_eig_xx Eigenvectors of morphology, like eig_xx for 𝑟 ≤ 𝑅(𝑉max).
RVmax_eig_xy
RVmax_eig_xz
RVmax_eig_yx

continues on next page

32 Chapter 3. Understanding and Analysing VELOCIraptor Output

VELOCIraptor Documentation, Release 1.60

Table 1 – continued from previous page
Name Comments
RVmax_eig_yy
RVmax_eig_yz
RVmax_eig_zx
RVmax_eig_zy
RVmax_eig_zz

Additional Spherical Overdensity Mass/radius: If extra spherical overdensity values are requested via Overden-
sity_values_in_critical_density config option, code calculates masses/radii/angular momentum following a naming
convention of SO_property_rhocrivalue_rhocrit where rhocritvalue is the overdensity value in units of the criti-
cal density, e.g., SO_mass_100_rhocrit. The code will also calculate quantities based on particle type: gas, star,
interloper, following SO_property_parttype_rhocrivalue_rhocrit
mass Mass enclosing a average density of the associated SO value.
Lx Angular momentum of enclosed mass in x-direction
Ly in y-direction
Lz in z-direction
Aperture quantities: If aperture quantities are requested code calculates a variety of properties within spherical
aperture in pkpc. Naming convention is Aperture_quantity_radiusvalue_kpc, or for a specific particle type Aper-
ture_quantity_parttype_radiusvalue_kpc, e.g. Aperture_mass_10_kpc. Particle types where individual quantities
are calculated: gas, star, bh, interloper. We list the property names here.
mass Total mass in aperture.
npart Total number of particles.
rhalfmass Radius enclosing half the mass within the aperture.
veldisp Velocity disperion
Projected aperture quantities: Similar to aperture quantitites but for 3 different projections based on particles
within a projected radius in pkpc. Naming convention is Projected_aperture_i_quantity_radiusvalue_kpc, where i
is from 0, 1, 2 for a x,y,z projection.
mass Total mass in aperture.
rhalfmass Radius enclosing half the mass within the aperture.

3.1.2 Gas Properties

This is a list of gas properties that are calculated if code is compiled with USE_GAS. Some require an extra con-
figuration option. Also, Spherical overdensity masses + angular momentum, aperture properties, projected aperture
properties are calculated for gas particles along along with some extra gas only properties.

Name Comments
Gas quantities: Bulk properties of gas particles/tracers when compiled to process gas properties. Properties unique
to gas are T_gas and SFR_gas.
n_gas Number of gas particles.
M_gas Total gas mass 𝑀gas.
M_gas_Rvmax Gas mass within 𝑅(𝑉max).
M_gas_30kpc Gas mass within 30 pkpc.
M_gas_500c Gas mass within a spherical overdensity of 500𝜌𝑐.
Xc_gas 𝑥 coordinate of centre-of-mass of gas particles relative to Xc.
Yc_gas
Zc_gas
VXc_gas 𝑥 coordinate of centre-of-mass velocity of gas particles relative to VXc.
VYc_gas
VZc_gas

continues on next page

3.1. Properties 33

VELOCIraptor Documentation, Release 1.60

Table 2 – continued from previous page
Name Comments
Efrac_gas Like Efrac but for gas particles only.
R_HalfMass_gas Like R_HalfMass but for gas particles only.
veldisp_xx_gas Like veldisp_xx but for gas particles only and relative to the centre-of-mass.
veldisp_xy_gas
veldisp_xz_gas
veldisp_yx_gas
veldisp_yy_gas
veldisp_yz_gas
veldisp_zx_gas
veldisp_zy_gas
veldisp_zz_gas
Lx_gas Like Lx but for gas particles only and relative to the centre-of-mass.
Ly_gas
Lz_gas
q_gas Like q but for gas particles only and relative to the centre-of-mass.
s_gas Like s but for gas particles only and relative to the centre-of-mass.
eig_xx_gas Like eig_xx but for gas particles only and relative to the centre-of-mass.
eig_xy_gas
eig_xz_gas
eig_yx_gas
eig_yy_gas
eig_yz_gas
eig_zx_gas
eig_zy_gas
eig_zz_gas
Krot_gas Like Krot but for gas particles only and relative to the halo’s centre.
T_gas Average temperature of gas.
Zmet_gas Average metallicity of gas.
SFR_gas Total star formation rate of gas.
Star Forming (sf)/Non Star Forming (nsf) Gas quantities: Similar to gas properties but split by sf/nsf gas. For
brevity, we list only quantities unique to sf, as the nsf gas is similar but with _nsf naming convention. Only calculated
if USE_GAS and USE_STAR flags on.
M_gas_sf Total gas mass 𝑀gas.
R_HalfMass_gas_sf Half mass radii.
sigV_gas_sf Velocity dispersion of the gas.
Lx_gas_sf Like Lx_gas but for star forming gas.
Ly_gas_sf
Lz_gas_sf
Krot_gas_sf Like Krot_gas but for star forming gas
T_gas_sf Average temperature of star forming gas.
Zmet_gas_sf Average metallicity of star forming gas.
Aperture quantities: If aperture quantities are requested code calculates a variety of properties within spherical
aperture in pkpc. Naming convention is Aperture_quantity_gas_radiusvalue_kpc. We list the additional properties
calculated for gas here (which are in addition to mass,rhalfmass, etc).
Zmet Average gas metallicity in aperture.
SFR Total star formation rate of gas in aperture.

continues on next page

34 Chapter 3. Understanding and Analysing VELOCIraptor Output

VELOCIraptor Documentation, Release 1.60

Table 2 – continued from previous page
Name Comments
Projected aperture quantities: Similar to aperture quantitites but for 3 different projections based on parti-
cles within a projected radius in pkpc. Naming convention is Projected_aperture_i_quantity_gas_radiusvalue_kpc,
where i is from 0, 1, 2 for a x,y,z projection. We list the additional properties calculated for gas here (which are in
addition to mass,rhalfmass, etc).
Zmet Average gas metallicity in projected aperture.
SFR Total star formation rate of gas in projected aperture.

Name Comments
Extra Gas Properties: If extra gas fields are loaded by listing them using Gas_internal_property_names
Gas_chemistry_names and/or Gas_chemistry_production_names. The are associated input options related
to the input index calclation type done and output units. The output will have the following naming con-
vention: nameoffield_index_#_calculation_units_gas e.g.`, AlphaElements_index_0_average_unitless_gas.
Also requires that code is compiled with the USE_GAS flag As an example we show the fields if
Gas_internal_property_names=Pressure,MetalMassFractionFromSNIa, Gas_internal_property_index=0,1,
Gas_internal_property_output_units=kPa,unitless, Gas_internal_property_calculation_type=max,average,
Pressure_index_0_max_kPa_gas maximum pressure of gas in object.
MetalMassFractionFromS-
NIa_index_1_average_unitless_gas

average of this field.

One can also specify aperture_total and aperture_average as functions if aperture quantities are calcualed. The
output will have a simlar naming convention to above but with Aperture_ at the start and ending with the aperture
aperture itself #_kpc` for each aperture listed.

3.1.3 Star Properties

This is a list of stellar properties that are calculated if code is compiled with USE_STAR. Some require an extra
configuration option.

Name Comments
Star quantities: Bulk stellar properties when compiled to process star properties. Similar to gas properties but has
_star instead of _ gas. For brevity, we list only quantities unique to star particles.
tage_star | Average stellar age.
Aperture quantities: If aperture quantities are requested code calculates a variety of properties within spherical
aperture in pkpc. Naming convention is Aperture_quantity_star_radiusvalue_kpc. We list the additional properties
calculated for star here (which are in addition to mass,rhalfmass, etc).
Zmet Average stellar metallicity in aperture.
Projected aperture quantities: Similar to aperture quantitites but for 3 different projections based on parti-
cles within a projected radius in pkpc. Naming convention is Projected_aperture_i_quantity_star_radiusvalue_kpc,
where i is from 0, 1, 2 for a x,y,z projection. We list the additional properties calculated for gas here (which are in
addition to mass,rhalfmass, etc).
Zmet Average stellar metallicity in projected aperture.
Extra Star Properties: Like the extra gas properties but calculated if ` Star_internal_property_names
Star_chemistry_names `and/or Star_chemistry_production_names. Naming convention is the same but ends with
_star Also requires that code is compiled with the USE_STAR flag

3.1. Properties 35

VELOCIraptor Documentation, Release 1.60

3.1.4 Black Hole Properties

This is a list of black hole properties that are calculated if code is compiled with USE_BH. Some require an extra
configuration option.

Name Comments
Black hole quantities: Bulk properties of black hole particles when compiled to process black hole properties.
n_bh Number of black hole particles.
Mass_bh Total mass of black hole particles.
Extra Black hole Properties: Like the extra gas properties but calculated if ` BH_internal_property_names
BH_chemistry_names `and/or BH_chemistry_production_names. Naming convention is simialr save ends with
_bh Also requires that code is compiled with the USE_BH flag

3.1.5 Interloper Properties

This is a list of interloper DM properties that are calculated if code is compiled with ZOOM_SIM. These properties
are based on low resolution particles and can be used to gauge the level of contamination

Name Comments
Interloper particles: If analysing multi-resolution simulations, low resolution particles are often treated as con-
taminants. These are bulk properties of low resolution contaminant particles.
n_interloper Number of low resolution, interloper particles.
Mass_interloper Total mass of low resolution, interloper particles.

3.1.6 Extra DM Properties

This is a list of Extra DM properties that are calculated if code is compiled with USE_EXTRADM. These properties
are useful if running on standard dark matter.

Name Comments
Extra DM Properties: Like the extra gas properties but calculated if ` Extra_DM_internal_property_names `has
fields specified. Useful for nonstandard dark matter runs, such as annihilating or interacting dark matter. Naming
convention is nameoffield_extra_dm Also requires that code is compiled with the USE_EXTRADM flag

36 Chapter 3. Understanding and Analysing VELOCIraptor Output

CHAPTER

FOUR

DEVELOPING VELOCIRAPTOR

VELOCIraptor is an freely available from github. It is in active development, with additions for hydrodynamical
inputs, extra inputs and functionality being implemented. The code can also be called as a library for on-the-fly halo
finding integration into any code. Currently there are hooks for SWIFTSIM.

4.1 Integration into N-Body/Hydro

37

https://www.github.com/pelahi/VELOCIraptor-STF/
https://gitlab.cosma.dur.ac.uk/swift/swiftsim/

VELOCIraptor Documentation, Release 1.60

38 Chapter 4. Developing VELOCIraptor

INDEX

F
FOF3D (C macro), 27
FOF6D (C macro), 27
FOF6DADAPTIVE (C macro), 27
FOF6DCORE (C macro), 27
FOF6DSUBSET (C macro), 27
FOFBARYON6D (C macro), 27
FOFBARYONPHASETENSOR (C macro), 27
FOFSTNOSUBSET (C macro), 27
FOFSTPROB (C macro), 27
FOFSTPROBLX (C macro), 27
FOFSTPROBNN (C macro), 27
FOFSTPROBNNLX (C macro), 27
FOFSTPROBNNNODIST (C macro), 27
FOFSTPROBSCALEELL (C macro), 27
FOFSTPROBSCALEELLNN (C macro), 27

H
HDFEAGLENAMES (C macro), 28
HDFEAGLEVERSION2NAMES (C macro), 28
HDFGADGETXNAMES (C macro), 28
HDFGIZMONAMES (C macro), 28
HDFILLUSTISNAMES (C macro), 28
HDFMUFASANAMES (C macro), 28
HDFNUMNAMETYPES (C macro), 28
HDFOLDSWIFTEAGLENAMES (C macro), 28
HDFSIMBANAMES (C macro), 28
HDFSWIFTEAGLENAMES (C macro), 28
HDFSWIFTFLAMINGONAMES (C macro), 28

P
PSTALL (C macro), 26
PSTBH (C macro), 26
PSTDARK (C macro), 26
PSTGAS (C macro), 26
PSTNOBH (C macro), 26
PSTSTAR (C macro), 26

39

	Getting VELOCIraptor
	Requirments
	Optional requirements

	Compilation Options

	Using VELOCIraptor
	Running the code
	Arguments
	Running within swiftsim
	Output
	Configuration File
	I/O
	Searching for Structures
	Unbinding
	Properties
	Simulation Info
	Parallel
	Miscellaneous
	Particle search types
	FOF search types
	HDF Input

	Understanding and Analysing VELOCIraptor Output
	Properties
	Standard Properties
	Gas Properties
	Star Properties
	Black Hole Properties
	Interloper Properties
	Extra DM Properties

	Developing VELOCIraptor
	Integration into N-Body/Hydro

	Index

